Beyond the Void
BYVoid
pku 3067 Japan

树状数组经典的应用。把每个公路看作(a,b)一条边,首先按a为第一关键字,b为第二关键字从大到小排序。然后维护一个序列A[i],表示某时刻当前已经连到b的边数,用树状数组维护其前缀和Sum[i]=A[1]+A[2]+…+A[i]。当插入一条边(a,b)时,与这条边相交的边数就是Sum[b-1],令Ans加上Sum[b-1],然后修改A[b]加1。

由于边已经排过序,与每次添加的边相交的边数恰好可以从前b-1个A中统计出。时间复杂度为O((N+M)log(N+M))。

/* 
 * Problem: pku3067 japan
 * Author: Guo Jiabao
 * Time: 2009.3.19 13:38
 * State: Solved
 * Memo: 树状数组统计
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
const int MAXM=1001;
using namespace std;
typedef __int64 big;
struct BIT
{
	big C[MAXM];
	int N;
	void init(int tN)
	{
		N=tN;
		memset(C,0,sizeof(C));
	}
	inline int lowbit(int x)
	{
		return x&(-x);
	}
	big sum(int p)
	{
		big rs=0;
		while (p)
		{
			rs+=C[p];
			p-=lowbit(p);
		}
		return rs;
	}
	void modify(int p,int delta)
	{
		while (p<N)
		{
			C[p]+=delta;
			p+=lowbit(p);
		}
	}
}B;
struct highway
{
	int x,y;
}H[MAXM*MAXM];
int N,M,K;
big Ans;
inline int cmp(const void *a,const void *b)
{
	if (((highway *)a)->x > ((highway *)b)->x) return -1;
	if (((highway *)a)->x < ((highway *)b)->x) return 1;
	if (((highway *)a)->y > ((highway *)b)->y) return -1;
	return 1;
}
void init()
{
	scanf("%d%d%d",&N,&M,&K);
	B.init(M);
	for (int i=1;i<=K;i++)
		scanf("%d%d",&H[i].x,&H[i].y);
	qsort(H+1,K,sizeof(H[0]),cmp);
	Ans=0;
}
void deal()
{
	for (int i=1;i<=K;i++)
	{
		Ans+=B.sum(H[i].y-1);
		B.modify(H[i].y,1);
	}
}
int main()
{
	int i,T;
	freopen("japan.in","r",stdin);
	freopen("japan.out","w",stdout);
	scanf("%d",&T);
	for (i=1;i<=T;i++)
	{
		init();
		deal();
		printf("Test case %d: %I64dn",i,Ans);
	}
	return 0;
}

上次修改时间 2017-02-03

相关日志