Beyond the Void
BYVoid
USACO 4.2.1 Drainage Ditches 草地排水 ditch

很明显的网络最大流问题,我用的是Edmonds-Karp算法实现的。 Edmonds-Karp 算法步骤

每次通过BFS,找到残余网络上从源点到汇点的一条最短增广路

在流网络上增加增广路

修改残余网络,残余容量减去增广路,并添加增广路的反向弧

当无法BFS到增广路时,算法结束

USER: CmYkRgB CmYkRgB [cmykrgb1]
TASK: ditch
LANG: C++

Compiling...
Compile: OK

Executing...
   Test 1: TEST OK [0.000 secs, 3160 KB]
   Test 2: TEST OK [0.000 secs, 3156 KB]
   Test 3: TEST OK [0.000 secs, 3156 KB]
   Test 4: TEST OK [0.011 secs, 3160 KB]
   Test 5: TEST OK [0.000 secs, 3160 KB]
   Test 6: TEST OK [0.022 secs, 3156 KB]
   Test 7: TEST OK [0.000 secs, 3156 KB]
   Test 8: TEST OK [0.000 secs, 3160 KB]
   Test 9: TEST OK [0.011 secs, 3160 KB]
   Test 10: TEST OK [0.000 secs, 3160 KB]
   Test 11: TEST OK [0.011 secs, 3156 KB]
   Test 12: TEST OK [0.000 secs, 3160 KB]

All tests OK.


YOUR PROGRAM ('ditch') WORKED FIRST TIME!  That's fantastic
-- and a rare thing.  Please accept these special automated
congratulations.
/*
ID: cmykrgb1
PROG: ditch
LANG: C++
*/
#include <iostream>
#include <fstream>
#define MAX 201
using namespace std;

class Tadjl
{
public:
	class Tnode
	{
	public:
		int r,v;
		void set(int tr,int tv)
		{
			r=tr;
			v=tv;
		}
	};
	int cnt;
	Tnode link[MAX];
};

class tQueue
{
public:
	class linklist
	{
	public:
		linklist* next;
		int value;
		linklist()
		{
			next=0;
			value=0;
		}
	};
	linklist *first,*last;
	int size;
	void add(int p)
	{
		if (size==0)
			first=last=new linklist;
		else
			last=last->next=new linklist;
		last->value=p;
		size++;
	}
	int del()
	{
		int rtn=first->value;
		linklist *tfirst=first;
		first=first->next;
		delete tfirst;
		size--;
		return rtn;
	}
	void reset()
	{
		size=0;
		first=last=0;
	}
	tQueue()
	{
		reset();
	}
};

ifstream fi("ditch.in");
ofstream fo("ditch.out");

Tadjl adjl[MAX];
int N,M,ans;

inline int min(int a,int b)
{
	return a<b?a:b;
}

void init()
{
	int i,a,b,v;
	fi >> N >> M;
	for (i=1;i<=N;i++)
	{
		fi >> a >> b >> v;
		adjl[a].link[ ++adjl[a].cnt].set(b,v);
	}
}


int edmonds(int start,int end)
{
	int i,j,k;
	int father[MAX],fp[MAX],max[MAX];
	int Maxflow=0;
	memset(father,0,sizeof(father));
	max[start]=0x7FFFFFFF;
	tQueue *Q=new tQueue;
	Q->add(start);
	while (Q->size)
	{
		i=Q->del();
		for (k=1;k<=adjl[i].cnt;k++)
		{
			j=adjl[i].link[k].r;
			if (!adjl[i].link[k].v || j==start) continue;
			if (!father[j])
			{
				father[j]=i;
				fp[j]=k;
				max[j]=min(adjl[i].link[k].v,max[i]);
				if (j==end)
				{
					Maxflow+=max[j];
					while (father[j])
					{
						adjl[father[j]].link[fp[j]].v-=max[end];
						adjl[j].link[++adjl[j].cnt].set(father[j],max[j]);
						j=father[j];
					}
					memset(father,0,sizeof(father));
					Q->reset();
					Q->add(start);
					break;
				}
				Q->add(j);
			}
		}
	}
	return Maxflow;
}

void print()
{
	fo << ans << endl;
	fi.close();
	fo.close();
}

int main()
{
	init();
	ans=edmonds(1,M);
	print();
	return 0;
}

上次修改时间 2017-05-22

相关日志