Beyond the Void
BYVoid
伸展樹真好玩
本文正體字版由OpenCC轉換

伸展樹(Splay)這個東西,轉來轉去的,真好玩。

今天第一次寫Splay,Splay操作太強大了。Splay(x,y)操作爲把節點x旋轉到y節點下面,均攤時間複雜度爲O(logN)。

有了這個東西,就能實現兩棵Splay合併,要求一棵比另一棵所有元素都小。合併兩棵伸展樹a,b(a<b),方法爲把a中的最大值c,splay到a的根節點,此時a樹根節點的右子樹爲空,接下來把b樹接到c的右子樹就行了。

有了合併這個東西,Splay的刪除就比任何平衡樹的刪除都簡單了。方法就是先把要刪除的節點Splay到根位置,然後合併根節點的兩棵子樹即可(有點像左偏樹)。

Splay太好玩了,繼續研究。

NOIP2007 統計數字 Splay

/* 
 * Problem: NOIP2007 統計數字
 * Author: Guo Jiabao
 * Time: 2009.5.16 17:16
 * State: Solved
 * Memo: 伸展樹 Splay 插入 刪除 合併 
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
const int MAXN=200001;
using namespace std;
struct SplayTree
{
	struct ST_Node
	{
		ST_Node *left,*right,*father;
		int value,weight;
	}*root;
	int SC;
	ST_Node SE[MAXN];
	void ZIG(ST_Node *x)
	{
		ST_Node *y=x->father;
		// x->right
		y->left = x->right;
		if (x->right)
			x->right->father=y;
		// y->father
		x->father = y->father;
		if (y->father)
		{
			if (y==y->father->left)
				y->father->left = x;
			else
				y->father->right = x;
		}
		// y
		x->right = y;
		y->father = x;
	}
	void ZAG(ST_Node *x)
	{
		ST_Node *y=x->father;
		// x->left
		y->right = x->left;
		if (x->left)
			x->left->father=y;
		// y->father
		x->father = y->father;
		if (y->father)
		{
			if (y==y->father->left)
				y->father->left = x;
			else
				y->father->right = x;
		}
		// y
		x->left = y;
		y->father = x;
	}
	void Splay(ST_Node *x,ST_Node *y)
	{
		while (x->father != y)
		{
			if (x->father->father == y)
			{
				if (x->father->left == x)
					ZIG(x);
				else
					ZAG(x);
			}
			else if (x->father->father->left == x->father)
			{
				if (x->father->left == x)
				{
					ZIG(x->father);
					ZIG(x);
				}
				else
				{
					ZAG(x);
					ZIG(x);
				}
			}
			else
			{
				if (x->father->right == x)
				{
					ZAG(x->father);
					ZAG(x);
				}
				else
				{
					ZIG(x);
					ZAG(x);
				}
			}
		}
		if (y==0)
			root=x;
	}
	void insert(int value)
	{
		ST_Node **p=&root,*y=0;
		for (;;)
		{
			if (!*p)
			{
				*p=SE+ (++SC);
				(*p)->left = (*p)->right = 0;
				(*p)->value = value;
				(*p)->weight = 1;
				(*p)->father = y;
				Splay(*p,0);
				break;
			}
			y=*p;
			if (value == (*p)->value)
			{
				(*p)->weight ++;
				Splay(*p,0);
				break;
			}
			else if (value < (*p)->value)
				p=&(*p)->left;
			else
				p=&(*p)->right;
		}
	}
	ST_Node* join(ST_Node *a,ST_Node *b)
	{
		if (a) a->father=0;
		if (b) b->father=0;
		if (!b)	return a;
		if (!a) return b;
		ST_Node *c=a;
		for (;c->right;c=c->right);
		Splay(c,0);
		c->right=b;
		b->father=c;
		return c;
	}
	void remove(ST_Node *x)
	{
		Splay(x,0);
		root=join(x->left,x->right);
	}
	void delmin(int &min,int &cnt)
	{
		ST_Node *x=root;
		for (;x->left;x=x->left);
		min=x->value; cnt=x->weight;
		remove(x);
	}
}Splay;
int N;
int main()
{
	int i,c,v;
	freopen("pcount.in","r",stdin);
	freopen("pcount.out","w",stdout);
	scanf("%d",&N);
	for (i=1;i<=N;i++)
	{
		scanf("%d",&c);
		Splay.insert(c);
	}
	while (Splay.root)
	{
		Splay.delmin(v,c);
		printf("%d %d\n",v,c);
	}
	return 0;
}

上次修改時間 2017-02-03

相關日誌